PHYSICAL REVIEW B

VOLUME 42, NUMBER 16
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Using a conceptually novel approach that maps a two-dimensional interface exactly onto a
Feynman-Vdovichenko lattice walker, we derive an exact and general solution for the equilibrium
crystal shapes (ECS’s) of free-fermion models, i.e., models that are solvable via the Feynman-
Vdovichenko or (equivalently) Pfaffian methods. The ECS for these models is given by the locus of
purely imaginary poles of the determinant of the “momentum-space” lattice-path propagator. The
ECS may, therefore, simply be read off from the analytical expression for the bulk free energy.
From these shapes one can then obtain numerically (but to arbitrary accuracy) the high-temperature
direction-dependent correlation length of the dual system. We give several examples of previously
unknown Ising ECS’s, and we examine in detail the free-fermion case of the eight-vertex model.
The free-fermion eight-vertex model includes the modified potassium dihydrogen phosphate (KDP)
model, which is not in the Ising universality class. The ECS of the modified KDP model is shown
to be the limiting case of the ECS of an antiferromagnetic 2 X 1 phase on a triangular lattice in the
limit of infinite interactions. The ECS of the modified KDP model is lenticular at finite temperature
and has sharp corners. We explain the physics of this lens shape from an elementary calculation.
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I. INTRODUCTION

When a system is at solid-fluid coexistence, a macro-
scopic crystal can coexist in equilibrium with the sur-
rounding “sea” of fluid. Because of the anisotropy of the
crystal-fluid interfacial free energy per unit area, the crys-
tal has an interesting temperature- (7) dependent shape,
the so-called equilibrium crystal shape (ECS). In a
broader sense, the ECS is the shape of any macroscopic
inclusion of one phase in another, when the two phases
coexist in equilibrium. While the thermodynamics of
ECS’s has been understood for nearly a century,' the
determination of these shapes from the statistical
mechanics of a microscopic Hamiltonian has been a
problem of considerable interest only in recent years.?
The Ising model in zero magnetic field and below the
bulk transition temperature (7,) is the simplest model
describing the full two-phase system [as opposed to a
pure “interface” model such as the solid-on-solid (SOS)
model®]. The two-dimensional (2D) Ising model is partic-
ularly interesting for at least two reasons: (1) Exact solu-
tions are possible’ ® and (2) these exact solutions are
valuable in approximating the shapes of facets of 3D Is-
ing ECS’s.”® Since some real crystals, such as noble-gas
crystals, may possibly be approximated by an appropriate
Ising model, 2D Ising ECS’s may also have some
relevance to the analysis of experimental facet-shape
data.’

In a recent Letter,” we gave a general exact solution for
the equilibrium crystal shapes of 2D Ising models with
noncrossing bonds. This solution immediately general-
izes to the somewhat larger class of free-fermion models,.
which includes non-Ising models and is the class of all
models for which the bulk free energy may be found ex-
actly by the Feynman-Vdovichenko'®!" (FV) (or
equivalently by the Pfaffian'?) method. The central result
of Ref. 9 is that the ECS is given by the locus of purely
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imaginary poles of the determinant of the lattice-path
propagator. To be precise, if the “momentum-space” FV
lattice-walk matrix for a lattice .L* (the dual of the direct
lattice L) is denoted by A(k,,k,), then the ECS for the
dual model on .£, represented in Cartesian coordinates as
Y (X), is given by

Det[1—A(k, =iBAY,k, = —iBAX;{0})]=0, T<T,,

(1)

where {w] denotes the set of Boltzmann weights associat-
ed with the steps of the lattice walk. The matrix A is a
finite-dimensional g X ¢ matrix, where g is even and, in
the simplest cases, just equal to the coordination number
of the lattice. Since the bulk partition function of free-
fermion models can be expressed in terms of an integral
[dk, [dk,InDet(1—A) (Refs. 10, 11, and below), the
ECS’s for these models may, in fact, be read off from the
analytic form of the bulk free energy!

It is the purpose of this paper to give a more detailed
derivation of this simple result, to give some examples of
previously unknown Ising ECS’s, and to explore, in some
detail, a pedagogical example of a non-Ising case for
which Eq. (1) is also valid. The remainder of this paper is
organized as follows: In Sec. Il we derive Eq. (1) and dis-
cuss its practical use and range of validity. In Sec. III we
apply the FV method to the free-fermion cases of the
eight-vertex model.*~!* We identify the coexisting
phases of the model and show that Eq. (1) gives the
correct ECS of the corresponding dual models even for
the non-Ising case of the modified potassium dihydrogen
phosphate (KDP) model.'®!” In Sec. IV we conclude.

II. GENERAL SOLUTION

For definiteness consider an Ising model with fer-
romagnetic interactions. The generalization to other
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free-fermion models is immediate and will be made at the
end of this section. Let the 2D Ising system be defined on
a rectangular strip Q of a planar lattice £, i.e., a lattice
with noncrossing bonds. The strip ) has a geometric
dual, the strip Q* of the dual lattice .£L*. Without loss of
generality, we take the lattice to have basis vectors X and
¥, and we align the strip with the y axis. (It is always pos-
sible to choose a coordinate system in which the basis
vectors of the lattice are orthogonal unit vectors.) We
take the width of Q* to be N and think of the length of
Q* as finite, but tending toward infinity (Fig. 1). At zero
magnetic field and T <T,, a phase of predominantly
“up” (+) spins can coexist with a phase of predominantly
“down” (—) spins. The microscopic configurations of the
system can of course be described in terms of the spins on
1, but in the present context it is much more useful to
think in terms of the bonds of Q* dual to the “broken”
bonds of (1 which connect spins of opposite sign. We
consider these bonds to be elementary microscopic inter-
faces of microscopic normal 7, which we take to point
from — to +. If the coupling between spins at sites i and
Jof Qis K;;, the creation of an elementary interface be-
tween them costs energy 2K,; /B and is, therefore, associ-
ated with a Boltzmann factor of ®;, =exp(—2K, ), where
B=(kpT)"', with k Boltzmann’s constant.

A macroscopic interface between the (+) phase and
the (—) phase can be forced into the system by dividing
the boundary of () into two connected (1D) regions and
fixing the boundary spins in one region to be + and in
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FIG. 1. Boundary conditions considered in this paper, illus-
trated on a rectangular lattice: The strip Q of the square lattice
L is defined by the heavy dots, and the spins on its boundary are
forced to be either “up” (+) or “down” (—) as shown. Its dual,
the strip Q* of the dual lattice £ *, is indicated by the grid of
dotted lines. The (+ —) boundary conditions force an interface
into the system, which runs from dual spin o, to dual spin
ov.a- The lattice walk shown illustrates a term in the sum of
Eq. (9).
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the other region to be —. As shown in Fig. 1, this forces
an interface to run across the strip from the dual spin
o{0,0) at (0,0) to the dual spin oy, at (N,M) on the
boundary of Q*. With this (+ —) choice of boundary
condition, denote the Hamiltonian of the system by
Hxw and its partition function by Zyu
=Trexp(—B# y ). If all boundary spins are fixed to be
+, denote the Hamiltonian of the system by %™ T and its
partition function by Z**=Trexp(—B# ). In the
latter case, there can be no macroscopic interface across
the strip, which now contains only the pure + phase.

The sample free energy BF* " =—InZ* " contains con-
tributions from the bulk and from the boundaries, only.
The sample free energy BF+ = —an,QL_A_, contains con-

tributions form the bulk, from the boundaries, and from
the interface running from (0,0) to (N,M). The interfa-
cial free energy per unit length, y(fi), for an interface of
macroscopic orientation 1 is thus naturally defined by the
thermodynamic limit

R 1, | Zim
By(n)= _L]lj-nx zln 2+ (2)
=~ lim %m(mmaﬁmw=1/§*(ﬁ) . Q)

where L =(N’+M?)'?, i=(—M,N)/L, §=(N,M)/L,
and £*() is the high-T correlation length of the dual sys-
tem in the 1 direction, with -1=0. We will use the con-
vention that N >0 (N <0) corresponds to the upper
(lower) half of the strip being in the (+) phase and the
lower (upper) half in the (—) phase. The duality state-
ment of Eq. (3) has been derived by a number of authors'®
and forms the basis of all solutions*> which were known
prior to our result Eq. (1): A calculation of the dual-
lattice correlations (o o0 f s in the thermodynamic
limit N,M — o, with @i (1) fixed, gives ¥ (@), from which
the ECS is determined via the well-known Wulff con-
struction.! We call this the “canonical” formulation of
the ECS problem, because the interfacial free energy
must first be calculated from Eq. (2) at fixed macroscopic
orientation.

In this paper we shall take an alternative approach,
which allows the direct determination of the ECS from
statistical mechanics, without going through the auxiliary
function y(n). One of the key results in the theory of
ECS’s is that the ECS can be regarded as the ‘“‘grand
canonical” form of the interfacial free energy, that is, the
ECS is the Legendre transform of the ““canonical” inter-
facial free energy y(fi).!° This statement takes a particu-
larly simple form if the ECS is represented in Cartesian
coordinates as (in 2D) Y (X):

__of _aY
M8 STax
where f(s)=y(@)(1+s2)"2 i=(—s,1)/(1+s2)"? and
A is a constant controlling the volume of the ECS. In go-
ing from f(s) [or y(f1)] to Y (X), we pass from a “‘canoni-
cal” ensemble at fixed macroscopic slope s (or 1) (the
density variable) to a ‘“‘grand canonical” ensemble, in
which all s are allowed and X (the field variable) selects a
particular slope s as 0Y /0X. We may, therefore, express
the ECS in terms of a grand canonical trace as?

AY(X)=f(s)+AXs, (4)
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7:,— l—ln%Trexp

where the sum in the exponential extends over all micro-
scopic interfaces whose length and normal are denoted by
d; and %;. In Eq. (5) the local density variable %; has
been coupled to the field variable AX% and the sum over
M sums over an ensemble of systems of all possible mac-
roscopic interface orientations. We take each system of
this ensemble to be defined on  with + — boundary
conditions labeled by M. The sum 3, 7;d, vanishes
around microscopic interfaces forming closed loops.
Thus, the only contributions to the field term in the ex-
ponent arise from the line from (0,0) to (N,M), and that
contribution is —AXX-3; %;d; =AXM, independent of
the particular path traced out by the line. Thus, Eq. (5)
becomes

4 —
V4 N.M

BLY (X)= Z

1 —BAXM
Aim In % e
The field term exp(—BAXM) is a fugacity for the
“height” M and, therefore, controls the orientation of the
interface. We now evaluate ZV w/Z*" using the
Vdovichenko-Feynman “random walker”” method.'®!!

To see what the interface has to do with walkers, con-
sider the standard low-T expansions®' of Z ,; and Z "

(6)

ztt=e "0 s wiGr=e T3, (7)

G, .

> W(G=e
)G,+

Zyy=ce oz, . (8)

In Egs. (7) and (8), E,, is the ground-state energy of the
system with the (+ +) boundary condition, {G} , , is the
set of graphs which can be drawn on Q* such that each
graph is equivalent to a configuration of elementary inter-
faces when the (+ +) boundary condition is imposed,
{G} . _ is the corresponding set of graphs for the (+ —)
boundary condition, and each graph is summed with
weight W(G). Since each link of a graph G corresponds
to an elementary interface, the weight of G is given by
W (G)= [Tyinks @;;» Where the product is taken over all the
links of G. The set {G},, contains closed polygons
(loops) only. The set {G}, _ contains loops and open
graphs connecting (0,0) and (N,M). If (O) denotes the
sum of W(G) over all single closed loops, (O ~0O) the
sum over all pairs of closed loops, (—) the sum over the
open graphs, (— ~ O ) the sum over open graphs in the
presence of single closed loops, etc., we can write, sym-
bolically,

S, ,=1+(0
2+_

JH(O~0)+ -,
=(—)+(—~0)+(—~0~0)+ - .

Instead of evaluating the sums over closed loops, it turns
out to be easier (as first conjectured by Kac and Ward,?
first utilized by Feynman,'! and finally proved by Sher-
man?®) to sum over closed directed lattice paths (lattice

v —AXXS 2,d, ”—/;’F++
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(5)

[
walks). Give weight W ( G )=(—1)% ILsteps @35 to each sin-
gle directed closed path G, where S is the number of self-
intersections of the path and the product is over the steps
(directed links) of the path. The upshot of the Sherman
theorem,?® which holds for any planar embedded lattice
with noncrossing bonds, is that 2, , =exp(O), where
(0) denotes the sum of W(G) over all possible G. The
crucial point here is that the n-loop term of the directed
paths has uncoupled into (0O)"/n! Hence, if
(—) denotes the sum over open graphs which are count-
ed using directed paths weighted in the same manner as
the closed paths of (O ), one is led to expect that (—) un-
couples from the (O)s so that, Zy,=(—)Z"".
Calheiros, Johannesen, and Merhnl24 showed that,
indeed, this follows rigorously from the Sherman theorem
by considering the closed-loop expansion with an auxili-
ary bond J; external to .£L* connecting the dual sites (0,0)
and (N, M). In the limit as J—0, one finds that??

4+ —
Zym
Z++

= 3 (—D[lo,, 9)
(0,0)—(N.M) steps
where the sum extends over all directed paths from (0,0)
to (N, M), the product is over all directed links or steps of
the path, and S is the number of self-intersections of the
path.
Following Feynman'' and Vdovichenko,'® the sum of
Eq. (9) can now easily be evaluated, at least in the ther-

modynamic limit as |N|— . Let {d,}, with
€{1,2,...,q}, be the set of vectors which correspond
to all possible distinct directed bonds of L*. If L* is a

Bravais lattice, g is the coordination number; otherwise, g
is the sum of the coordination numbers for each site of
the unit cell. (Since for each d, thereisa d,=—d,, g is
even.) Imagine the paths from (0,0) to (N,M) to be gen-
erated by a lattice walker and denote by d,(n) the nth
step of the walk. With each change of the walker’s direc-
tion, we associate a phase factor exp(i¢,,/2), where ¢,
is the angle (“of turn”) from d,(n) to d,(n +1), defined
such that }¢w,| <. \¢w!—7r w1ll be excluded explicit-
ly.) This keeps track of the parity of self-intersections be-
cause the product of these phase factors over a single
closed loop gives —(—1)5, a topological property of pla-
nar embedded loops.?>?® Let ¥, (x,y;n) be the sum over
all weighted walks (including the phase factors) which
step onto the origin with d,(0) and n steps later, onto site
(x,y) with d,(n). These ¥, (x,y;n) then obey a recur-
sion equation which, in the limit as the strip width
IN|— o and full translational symmetry is restored, can
be diagonalized via a Fourier transform to obtain'®!!

Volky,kyin +1)=3 A,k k)WY (K kysn) (10)
The A, are the elements of the ¢ X g matrix A and have
the form .

(k k w —o, ’ld"u‘/- —ik-d

x» My

e (1=84, a) » (1)
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where k=(k,,k,). The Kronecker 6 in (11) ensures that
walks cannot 1mmed1ately backtrack (Ftbw =m). The
sum over all paths from (O, 0) to (N,M), [Eq. (9)] can now
be written in terms of A as?’
Zyu dk,dk, RN S’
Z+t f f P ’ EO(AM Hout¥m *

g

(12)

In principle, the strip  should be chosen such that
Hout = Vin» and so self-intersections are properly accounted
for; however, in the thermodynamic limit this is not im-
portant, since we can then replace (Am)%m"m with
Tr(A™).

The FV method gives us an intuitive picture of a walk-

10 573

cannot keep track of the microscopic interface orienta-
tions, the field term of Eq. (6) can be incorporated into A
because it depends only on the y coordinate M of the final
step of the walk. Since with every transition to a step d,,
the walker’s y coordinate changes by ’)}-d#, we can associ-
ate with this transition a field term exp(—pBAXy-d,) in
addition to the topological phase factor and the
Boltzmann weight. The product of these field-term fac-
tors over the path from (0,0) to (N, M) gives a total field
term of exp( —fSAXM). Diagonalizing the corresponding
recursion equations, one arrives (trivially) at the same
form of A as in the case X =0 except that where we used
to have just k,, we now have ky —iBAX. Thus,
(ZyN 4 /Z 7 ")exp(—BAXM) is simply given by the right-
hand side of (12) except that A(k,,k,) is replaced with

) o ; o
er, described by the step-to-step transition matrix A, gen- Alky,k, —iBAX). Substituting this fqrm of (Zym/
. . . . : Z++ )ex —BAXM) into Eq. (6), we obtain?®
erating all possible interface configurations. While A p( q. 16
J
. dk dk, Lk Ntk ]
LY (X)=— lim -}Vln 2 I A I E SR (13)

where A=A(k,,k,
M?,,exp(lkM =27 3Fx__ 8(

q

q
S II(1-4,)

. 1 T dkx tk Ny=1y+4
AY(X)=— 1 —1 X
A NN f*r 2 ¢ Det(1—A)
where A=A(k,,—iBAX) and A,, with i€{1,...,q},

denote the elgenvalues of A. In the thermodynamic limit
|N| — w0, only the saddle point contributes to the integral
of Eq. (14). With A of the form (11), the condition for the
integrand of (14) to have a saddlepoint®® is given by
Det(1— A)=0, which is approached asymptotically like
1/N, i.e., Det(1—A)—0 like 1/N as |[N|— . Thus (14)
is simply evaluated as

BLY (X)= —ik.

x

(15)

where k, is the solution to Det[1—A(k,, —iBAX)]=0,
which may succinctly be expressed in the form of Eq. (1).
The propagator for lattice paths is defined as the ampli-
tude for the walker to arrive after any number of steps,
ie., as 3% _oA"=(1—A)"'. Equation (1), therefore,
expresses the ECS as the locus of purely imaginary poles
of the determinant of the propagator for lattice paths.

An alternative way of evaluating (13) is to make use of
the fact that replacing Tr(1—A) ! with 1/Det(1—A) in
the integrand of (13) does not change the saddle point in
the thermodynamic limit |N|— co. This allows us to ob-
tain further insight into the analytical structure of solu-
tion (1). Replacing Tr(1—A)~ ' with 1/Det(1—A), sum-
ming over M integrating over k,, and making the change

of variable e * =z leaves us w1th the contour integral

—iBAX) and X must be bounded such that A*—0 as P— . Summing over M, using the identity
k —2mn), and then integrating over ky, we obtain

1 dz_ zN

m n 2mi z Det(1—

BAY (X)= Jim AR

(16)

where A=A(k,, —ifAX) and the contour of integration
is counter clockwise around the unit circle |z|=1. Since
for matrices A of the form (11), the translational invari-
ance of the lattice implies that Det(1— A) is just a poly-
nomial in z and 1/z (see also Ref. 29), the result [Eq. (15)]
follows immediately. For all the Ising models of Ref. 30
for which the exact (bulk) solution is known, the poles of
the integral of Eq. (16) have a very simple structure: For
all these models zDet(1—A) is of the form
[z —z,(X)][z —z,(X)] for appropriate orientation of the
axes. The roots z;(X) and z,(X) are real and positive for
XE€[Xnin»Xman] and T<T,.. For a range of the field
variable X €[X , Xp1C[ X n>Xmax)s 21 (X)=1, and
z,(X)= 1. Thus, for XE€[X ,,X;], Eq. (16) is evaluated
as BAY (X)=—In[z,(X)], if N >0, and as —In[z,(X)], if
N <0. Since the outward normal of the interface is
a=(—(M)(X),N)/L, N>0 (N <0) corresponds to the
“upper (lower) half” of the ECS. If X ,#X,_, and
XpFXmax, and X €[ XX 4 JU[Xp, X max ], then (by
definition) either both or neither of the poles z,,z, lie in-
side |z =1. In this case we find that Af(k , k, —iBAX)

no longer converges for all real (k,,k,) as P— .
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Hence, for X €[ X in, X 4 JU[Xp, X max ], the substitution
Alky,k,)—Alk,,k,—iBAX), which incorporates the
field term of Eq. (6) into A, is no longer well founded
mathematically for a purely real integration path in the
k. plane. However, since the ECS of any 2D system with
finite, short-range forces is smooth®>*> for 0< T < T, it
follows from analytical continuity that the upper half of
the ECS must be given by —In[z,(X)], and the lower half
by —In[z,(X)], for the entire range of field
XE€[X insXmax]- This analytical continuation amounts
to deforming the integration contour of Eq. (16) to in-
clude the relevant pole, thereby avoiding regions in the z
plane (k, plane) where the modulus of one or more eigen-
values of A(k,, —iBAX) is greater or equal to unity. [In
writing down the integral as its saddle point as in Eq.
(15), this analytical continuation is implicit.] In general,
the ECS problem is defined for those fields X that allow a
path in the k, plane from —= to 7 along which the

|

dk . dk
=Beo— ff oy Dt 1A [k k

5> €Xp(
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modulus of every eigenvalue of A(k,, —iSAX) remains
less than unity. To summarize, we have for T'< T, and
Xmin =X S/Ymax
—Inz, if A-§=0 (upper half) ,
PAY(X=1_1h, if 8§ <0 (lower half) , (17
which can, again, be expressed succinctly in the form of
Eq. (1).

The problem of calculating the ECS has been reduced
to the problem of finding the purely imaginary zeros of
Det(1—A). While it is straightforward to construct the
matrix A for a given lattice, this is not necessary if the
analytic form of the bulk free energy of the Ising system
defined on either .L or .L* is known. Using the FV
method to evaluate 2, . [cf. Eq. (7)], which is what the
method was originally designed for,'%!! one finds that the
bulk free energy per unit cell of the model defined on .£ is
given by

—2K)1) . (18)

In Eq. (18), g, is the ground-state energy per unit cell, the factor of 1 comes from the fact that directed paths may be
traversed in two directions, and the subscript .L* emphasizes that A describes a walk representing the interface on the
dual lattice L*. Thus the ECS for the Ising system can simply be read off from the analytic form of the bulk free ener-
gy!31 This is a remarkable result because, naively at least, one would not expect the analytic form of the bulk free ener-
gy to contain complete information on the surface thermodynamics. The bulk free energy is normally given in terms of
A because the FV walker problem is traditionally formulated'®!! in terms of high-T (tanhK) graphs on the direct lat-

tice L. The corresponding form of the free energy is

Bf»=—1n2’ ] coshk,; ——ff

where ¢ is the number of sites per unit cell and the prod-
uct is over all the bonds of the unit cell. As a direct
consequence of the duality?! between the systems on £
and .L*, Eq. (19) can simply be obtained from (18) by ex-
pressing exp(—2K;;) as (l—tanhK;;)/(1+tanhK;;).
Thus, equivalent expressions for the ECS of an Ising
model on lattice .£ are

Det{l AL*[kX’ y,exp(—ZKU)]} N

K,)1}=0

On the other hand, if the bulk free energy of the dual sys-
tem on .L* is known in terms of an integral over
InDet{1—A,[k,,k,;exp(—2K7)]} (low-T graphs) or
In Det{1— A «[k,,ky;tanh(K7)]} (high-T graphs), the
expressions (20) [and, of course, also (19) and (18)] may be
obtained via the duality transformation®' exp(—2K 5)
—tanhK;;.

Once one has obtained the ECS from Eq. (1), one can
use the inverse of the Wulff construction to determine the
corresponding interfacial free energy per unit length
v(6), or equivalently, the inverse of the (anisotropic)
high-T correlation length £*(8+m/2) of the dual system
[cf. Eq. (3)]. Given the ECS as Y (X), the (2D) analytical
form of the inverse Wulff construction is given by

(20)
Det{1—A/[k,,k,;tanh(

dk
ylnDet{l Ak, k,;tanh(K;)]} (19)

y(0)=1/*(0+1m/2)

Y

tanf= X (21
It is generally not possible to obtain an analytic, closed-
form expression for y(6) since this would generally in-
volve finding the roots of polynomials of order higher
than fourth.’> Of course, Eq. (21) can always be imple-
mented numerically to obtain y(8) to arbitrary accuracy.

Figures 2 and 3 show two examples of ECS’s and cor-
responding interfacial free energies typical of ferromag-
netic Ising models. These shapes display the following
universal features of 2D Ising ECS’s:> (1) The ECS be-
comes a circle as T— T, . For less symmetric lattices the
ECS becomes an ellipse as T— T, (see Fig. 9). This is a
result of the fact that the lattice anisotropy is a marginal
variable (in the renormalization-group sense). (2) The
ECS, as obtained from Eq. (1) for fixed A, vanishes in all
directions linearly with T'as T— 7, . In Table I we give,
for the convenience of the reader, the analytical form for
the ECS of the Ising model defined on a number of com-
monly encountered lattices (Fig. 4). The results for the
ECS of the square, triangular, and honeycomb lattices
have been obtained previously*> via the canonical formu-
lation [see Eq. (3)] from the known correlation lengths of

=AX sin6+AY cos6,
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FIG. 2. ECS (left) and corresponding Wulff plot (right) of the
diced lattice [Fig. 4(c)] for equal, ferromagnetic couplings. The
Wulff plot [polar plot of the interfacial free energy per unit
length, y(6)] was obtained numerically from Eq. (21). Different
curves correspond to different temperatures, spaced equally
from O (polygon) to 7. (dot at center) at intervals of T /6.

these lattices.’> We obtained the equations for the Ka-

gomé and ‘“Union Jack” lattices and their duals by expli-
cit construction of the matrix A. For the special cases
K,=K,, K,=K;, and Ks=K for the Kagomé lattice,
and K,=K,=K;=K, and K;=K, for the “Union
Jack” lattice, our result for Det(1—A) reduces to that
which can be read off from the bulk free energy as ob-
tained by Kano and Naya®* and by Vaks, Larken, and
Ovchinnikov, respectively.

In the derivation above, we had ferromagnetic Ising
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FIG. 3. Same as Fig. 2 for the 4-8 lattice with ferromagnetic
couplings K, =K,=K;=K, and Ks=K, as indicated in Fig.
4(d) with K, /Ks= % The horizontal and vertical faces at T =0
are associated with K; the diagonal ones with K.

models in mind. However, the properties of the model
crucial for our derivation are satisfied for a wider class of
models. Hurst and Green®® have shown that the FV
method is equivalent to the Pfaffian'? method, which can
be used to solve any model which can be written as a free
fermion field theory, i.e., a field theory which is quadratic
in fermionic operators. The factors of (—1) which appear
in the FV method are directly related to the (—1)’s of
fermion anticommutators, and the uncoupling of directed
graphs, necessary for the FV method to work, is precisely

TABLE 1. Analytic expressions for the ECS’s of the lattices indicated. The labeling of the interactions and the basis vectors a and

b are defined in Fig. 4.

Examples of exact equilibrium crystal shapes

A — B cosh(BAa-Y)— C cosh(BAb-Y)—D cosh[BA(a+b)-Y]—E cosh[BA(a—b)-Y]=0

Y=(—Y,X); ¢ =cosh(2K,), s, =sinh(2K))

Rectangular Triangular Honeycomb
A=cc; A=c,c,c31t55,8; A=c,cyc3t+1
B=s, B=y5s, B=s;s;
C=s, C=s, C=s5,53
D=0 D=s, D=s,s,
E=0 E=0 E=0

Kagomé

Diced

A=(cjc3c5+515385)(52848¢ T €y04¢6) T 10y T er03 506

B=1c45,5:5, + 535485 +5,54(cac6+C3C5)
C=1c,53545¢ T ¢35,5,85+5,53(c;c5+cacq)
D=cs5,535¢ 6525455+ 5585¢(cic3+c,c4)
E=0

“Union Jack”

A=cscq(c1cy0304F515,5354)H5556(C1€48,8;3
+cyc38,84)Fc e3¢5t cac4c6t 1

B=s5,s¢(c; +cic5)+s355(cs +cycq)

C=s45,(c3tcics)+s s5(c, +cqce)

D=s,s4(cs+tc c3)+s53(ce+crc4)

E=0

4-8

A=cscelciCy03¢4 155,535 1) F55¢c6(CiC25354+5,5,¢3¢4)
+c556(C1€485253F5,54¢203) F5556(C 35,54 +5153¢,¢4)

B=s5(c ¢yt cicq)tcs(s 5, +535,)
C=s¢(cicstcyc3)tcels;54+5,53)
D=s,s,
E=s5;

A=cscelcicyc3¢41515,5354)Fcs(c cqtcye3)
+celcicatce3eq) ey tcycstescq

B=35,s.5¢(c3c4F+cs)t+s35456(cicy+cs)

C:SZSjs5(C1€4+C6)+sls4s5(C2C3+C(,)

D=s,5:555,

E=5,54555¢
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(c) (d)

FIG. 4. Lattices of Table I in duality pairs: (a) rectangular
lattice (self-dual), (b) triangular and honeycomb lattices, (c) Ka-
gomé lattice (solid) and diced lattice (dashed), and (d) “Union
Jack” lattice (solid) and 4-8 lattice (dashed). The labeling of
bonds and the definition of basis vectors correspond to those
used in Table I. The position of sites within the unit cell,
defined by the basis vectors a and b, is arbitrary. In the figure
these sites were placed at symmetric positions for aesthetic
reasons.

due to the field theory being free. The upshot of this
equivalence is that we know the ECS for any model solv-
able by the Pfaffian or FV method, in the form of the
poles of the determinant of the free-fermion propagator
[Eq. (1)], provided that the FV walk can be identified
with an interface between coexisting phases.

III. EXAMPLE OF NON-ISING FREE-FERMION
CRYSTAL SHAPES: THE MODIFIED KDP MODEL

We will now demonstrate the validity of Eq. (1) for the
modified KDP model,'®!7 a non-Ising free-fermion mod-
el. To be precise, we shall show that the purely imagi-
nary poles of the determinant of the free-fermion propa-
gator of the modified KDP model will correctly give the
ECS of the dual model. The dual model turns out to be
the limit of an antiferromagnetic Ising model on a tri-
angular lattice as the interactions become infinite. The
resulting ECS’s have sharp corners for any T'<7T,. The
interface configurations of this model are extremely sim-
ple so that the solutions obtained from (1) can be
confirmed via an independent elementary calculation.
Historically, the 2D KDP model’’ was proposed as a
model having the characteristics of the ferroelectric po-
tassium dihydrogen phosphate (KH,PO,). The modified
KDP model is a special (more simple) version of the
KDP model in which a certain configuration has been
suppressed but which still has many of the essential
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features of the full KDP model.*®

The modified KDP model is a special case of the
eight-vertex model.!* !5 The square-lattice eight-vertex
model is defined by eight types of vertices, as shown in
Fig. 5, which must be placed on the vertices of a square
lattice, such that arrows from different vertices sharing
the same bond point in the same direction. Each vertex
carries a  Boltzmann  weight o, =exp(—pfe,),
i=1,2,...,8. When these weights satisfy the so-called
free-fermion condition®3®

00, T 0304 = 050, T W05 , (22)

the square-lattice eight-vertex model is solvable by the
Pfaffian method'? and, therefore, by the FV method.
Equation (22) is satisfied by any eight-vertex model at one
particular temperature. When the weights w; are chosen
such that (22) is satisfied at all temperatures, the model is
known as the free-fermion model.*®* Depending on the
particular choices for the w;, the free-fermion model can
be shown to be either trivial (decoupled 1D chains),
equivalent to the Ising model on a triangular lattice or, in
a certain limiting case (see below), equivalent to the
modified KDP model, which in turn turns out to be
equivalent to the close-packed dimer model on a hexago-
nal lattice.!’

We shall first show how the free-fermion model is
solved by the FV method. Specializing to the modified
KDP model, we will then identify the corresponding
walk with microscopic interface configurations separating
coexisting phases of the dual model. The FV method was
used by Ryazanov®® to calculate the bulk free energy of
the modified KDP model in zero (electric) field. It is
straightforward to generalize this particular solution to

Gt b
w

FIG. 5. Eight vertex configurations of the eight-vertex mod-
el. As an alternative to representing vertex configurations by
arrows, one can represent them by “bond arrangements.” These
bond arrangements are constructed from the arrow representa-
tion by first choosing (arbitrarily) a vertex which corresponds to
no bonds (no bold lines), the basis. Other bond configurations
are then constructed from the basis by drawing a bond for every
arrow pointing in a direction opposite to that of the correspond-
ing arrow of the basis vertex. (a), (b), and (c) show three of the
eight possible bond arrangements based on the vertices 2, 3, and
4, respectively.
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the general free-fermion model. To identify the “ran-
dom” walker counting problem, it is convenient to
represent the vertices as “bond arrangements™.*® There
are eight possible bond arrangements, three of which are
shown in Fig. 5. In the absence of macroscopic inter-
faces, allowed vertex configurations correspond to closed
loops of bonds, and calculating the partition function
reduces to the problem of counting all possible loop
configurations. Since the loop counting is on a square lat-
tice, the appropriate walking matrix A is 4X4 and
schematically given by

A= ._] ._ J 0 23)

This matrix involves only six vertices. The remaining
two, corresponding to no bonds and intersecting bonds,
are automatically taken into account correctly by virtue
of the free-fermion condition (22). With the choice of
bond arrangement (a) of Fig. 5, A becomes [cf. Eq. (11)]

-1
e, a wee 0 awqe _,
1 awse, W48, a lwe, 0
A=— .
o, 0 awge, wse, a wse,
-1
a wge_, 0 awee _, w4l

(24)

where vertex energy is measured with respect to vertex 2

(Fig. 5), which corresponds to no bonds, and a=e —in/4
eixze' *x and etyze'kiy. Equation (24) yields the
same bulk free energy as obtained by Hurst and Green®®
and by Fan and Wu'>' via other methods. We find

[making use of (22)]
Det(1—A)= a +2b cosk, +2c cosk,

+2f cos(k, —k,)+2g cos(k, +k,) ,

(25)
where a =i+ wit+owitol, b=00—0,0, =00,
— 0,03, [ =304~ 0swq, and § =w;w,—w,wg. The bulk
free energy of the free-fermion model is independent of
the choice of “bond arrangement,” because the integral
of InDet(1—A) is invariant under change of arrange-
ment. However, crystal shapes are obtained from
Det(1—A) itself, which does depend on the choice of
“bond arrangement.” As we shall see, it is necessary to
identify the coexisting phases for which we wish to calcu-
late the ECS, before the correct bond arrangement can be
chosen.

We define the modified KDP model as the limit of the
free-fermion eight-vertex model

e, e;=h+v, e;=e—h-+v, e,=et+h—v, 26)

e
e, =—+h,

2!
> eg=—=+v,

es=e,=F¢, >

10577

in the limit e, —> occ. The variables 4 and v correspond to
horizontal and vertical electric fields in the original KDP
model.’” In the limit e, = o, analysis of the bulk free en-
ergy'* shows that this model has a second-order phase
transition which is not of the Ising type. As T—»T:’, the
specific heat has a (T —T,)” !/? divergence instead of the
In|T —T,| divergence of the Ising model. The critical
temperature is given by the condition w,+w;+w,
=2 max(w,,0;,04), which divides the A-v plane into three
distinct regions: A <e/2 and v <e/2 define the region
#,, where w, is largest; & >¢e/2 and v <h define the re-
gion 77, where w; is largest; & <v and v >¢€/2 define the
region 774, where w, is largest.

The identification of the walk described by the matrix
A of Eq. (23) with a microscopic interface configuration
separating coexisting phases is most easily accomplished
in the familiar language of the Ising model by making use
of the following duality:'>3® Any eight-vertex model on a
square lattice is dual to an Ising model on the dual lattice
with four-spin interactions and (crossing-bond) next-
nearest-neighbor interactions. In terms of this equivalent
Ising model, the free-fermion condition is the condition
that the four-spin interaction and one of the next-
nearest-neighbor interactions be zero. The free-fermion
eight-vertex model (26) is, therefore, dual to an *‘Ising”
model on a triangular lattice (at least for finite e,), which
is calculated to have interaction energies®

J =1(—e +3h —v),
Jy,=4(—e,+3v—h), 27
Jy=1(—e, +2e—h —v),

where J; >0 corresponds to ferromagnetic coupling. In
terms of these Ising energies, the vertex weights become?®

e\ Flog=—J,—Jy—Jy, e, +do=J,+J,—Jy,

ey to=—J,+J,H Ty, egtdo=J,—J,+J]5, (28)

estJy=e,tJy=J3, e;tJg=egt+Jog=—J;,

where the overall constant Jy=+(—e; —2e—h —v).
Since we are interested in the limit e, — oo, we focus on
the completely antiferromagnetic sector of the model
(27), where e, is finite, but large enough to make all Ising
couplings negative. This sector is defined for e; >€>0
and consists of a triangular region in the h-v plane (see
Fig. 6). Within this triangular region, we identify the
same three regions of the h-v plane as those for the
modified KDP model. The interior of each region is
characterized by one bond being weaker than the others.
The weakest bond in R,, %5, and %, is J5, J,, and J,, re-
spectively. On the boundaries where regions meet, two
bond energies are equal and weaker than the third, except
at the point h =v =¢/2, where all couplings are equal.
We can now identify the nature of the phases in the inte-
rior of each region and on the boundaries. In the interior
of each region is a 2X 1 phase which consists of rows of
predominantly aligned spins. The rows are along the
direction of the weakest bond, and the sign of the align-
ment of the spins alternates from row to row. Within
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FIG. 6. Antiferromagnetic sector of the free-fermion model
defined by the vertex weights of Eq. (26), in the A-v plane of hor-
izontal and vertical (electric) fields. In regions 2, 3, and 4, the
ground state of the model is given by vertices 2, 3, and 4. In
terms of the equivalent Ising couplings, the regions, 2, 3, and 4
are characterized by 2X1 phases aligned along bonds J3, J,
and J,, respectively. As e;— o, the modified KDP model is
approached, and the boundaries of the antiferromagnetic sector
are pushed to infinity.

each region, the 2X 1 phase has two degenerate realiza-
tions, related by an overall change of sign, which consti-
tute the two phases which can coexist in zero magnetic
field below T, (see Fig. 7). The ECS is thus well defined
in the interior of each region, #,, 74, and #,, and corre-
sponds to the shape of a macroscopic inclusion of an ap-
propriately oriented 2X1 phase coexisting with a 2X1
phase of the same orientation but opposite overall sign.*
On the boundaries where regions meet, the ground state
is macroscopically degenerate and there is no ordered
phase at any temperature.

DO OO OO0
0% 22020203622
0000 700 0
00228090, 9, %,
KSR IR
R R KKK

%

Vo daVo %%
002000202 % %
10%0%%6%07%0.%0. %%

FIG. 7. An interface between two degenerate 2 X 1 phases of
the antiferromagnetic triangular Ising model. The dashed bond
is weaker than the others so that the ground state corresponds
to spins aligned in rows along the dashed lines.
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The walk of the FV method can now easily be
identified as a microscopic interface configuration: The
bold lines of bond arrangements correspond to composite
elementary interfaces on the hexagonal lattice dual to the
triangular Ising system (27), as shown in Fig. 8. Depend-
ing on which bond arrangement is chosen, these interface
configurations carry different vertex weights e; (Fig. 5).
To interpret these energies as the energies needed to
create the composite interfaces of Fig. 8 from the
ground-state configuration, we must first identify the
ground-state energy per vertex. It follows from Egs. (28)
that the energy for the 2X 1 ground state of ®,, 75, and
#4 corresponds to the energy of vertex 2, 3, and 4, re-
spectively. Subtracting the ground-state energies, one
can now easily identify the vertex energies of bond ar-
rangements (a), (b), and (c) as precisely the energies need-
ed to create the corresponding broken bonds per vertex
from the 2 X 1-phase ground states of regions R,, 77, and
H 4, respectively (see Figs. 5 and 8). Different bond ar-
rangements result in different weights for the entries of
the matrix A [cf. Eq. (23)], which leads to different func-
tions Det(1—A). It is now clear that the matrix A based
on bond arrangement (a), with vertex 2 describing the
ground state, can describe elementary interfaces of the
antiferromagnetic triangular Ising model only in #,. To
obtain the ECS in #7; and #,, A must be based on bond
arrangements (b) and (c), respectively. Det(1—A) for 73,
is obtained from Eq. (25) by making the substitutions
(b,f,g)—(—b,—f,—g), and for R,, by making the substi-
tutions (c,f,g) —(—c,—f,—g).

Before we take the limit e; — o, let us look at the kind
of shapes one obtains with bond arrangement (a) for finite
e,. In Fig. 9 we show the shapes obtained from Eq. (25)
with the vertex weights (26) at h =v =0 for increasing
values of e;. For e, /e <2, J;>0, and we are outside the
antiferromagnetic sector. The signs of J, and J, may be
reversed by symmetry, so that, for these couplings, the
model is equivalent to the triangular ferromagnetic Ising
model. The value e, /e=2 corresponds to sitting on the
boundary of the antiferromagnetic sector with J;=0.

1

FIG. 8. One-to-one correspondence between vertex
configurations of the eight-vertex model and composite elemen-
tary interfaces on the hexagonal lattice. The wavy lines corre-
spond to broken bonds of the triangular dual lattice which has
interactions J,, J,, and J; as shown.
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FIG. 9. Equilibrium crystal shapes of the free-fermion model
defined by the vertex weights of Eq. (26) at A =v =0 and for
various values of e, /e: (a) e;/e=1, (b) e; /=2, (c) e, /e=4,
and (d) e; /e =8. In each case, the ECS has been plotted at tem-
peratures equally spaced from O to T, at intervals of 7, /6. The
lattice of the model was chosen to have the same basis and
orientation as shown in Fig. 7, with the weakest bond in the
horizontal direction. Shapes (a) and (b) are the ECS’s of a mac-
roscopic inclusion of “up” phase in a sea of “‘down” phase for
the ferromagnetic triangular and square Ising models, respec-
tively. Shapes (c) and (d) are the ECS’s of a macroscopic in-
clusion of 2X 1 phase in another of opposite (staggered) magne-
tization (see Fig. 7). With increasing value of e, /¢, the modified
KDP model (e, /e = « ) is approached and the corners pointing
in the direction perpendicular to the weakest bond become in-
creasingly sharp.

This is equivalent to an antiferromagnetic rectangular Is-
ing model, which (again, by symmetry) is identical to a
ferromagnetic rectangular Ising model. For e, /e>2, we
are in region %7, of the antiferromagnetic sector of the
triangular Ising model and the coexisting phases are 2X 1
phases aligned along the direction of bond J;. Note that,
with increasing e, the corners “pointing” in the direc-
tion perpendicular to the weakest bond J; become in-
creasingly sharp.

Setting e; = in Egs. (27) shows that the modified
KDP model is dual to an antiferromagnetic “Ising” mod-
el on a triangular lattice with infinite interactions
differing from each other by a finite amount. The
infiniteness of these interactions severely restricts the pos-
sible interface configurations, because any interface must
make maximal use of the weakest bonds. Thus, the walk-
er generating the interface performs a very simple walk:
After a step along the easiest elementary interface (along
the bond dual to the weakest bond of the triangular lat-
tice), he can either step to the right or to the left. Next,
he is forced to again take a step along the easiest elemen-
tary interface, and so on. The simplicity of this walk is
reflected in the structure of the matrix A, which becomes
the direct sum of two 2X2 matrices, when
0, =w;=wg=0. The determinant of the propagator fac-
tors, therefore, into two simple expressions. One de-
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scribes the upper half of the crystal shape; the other, the
lower. For 72, one finds for the ECS the simple expres-
sion

050 TPt e P —0,=0 and (X,Y)—(—X,—Y)
(h,v)ER, . (29)

The corresponding equations for 725 and 77, are obtained
from Eq. (29) by making the substitutions w,— —w,4 and
w3;— —w;, respectively. Note that the pair of functions
(29) (and the corresponding ones in 775 and #,) describe
curves of infinite extent and that the ECS is to be inter-
preted as the convex region enclosed by the two functions
for T <T.. Where the pair of curves intersect, the ECS
has a sharp corner which moves toward the origin like
(T,—T)"? as T—T, . In all other directions the ECS
vanishes linearly with 7, as T— T, . The sharp corners
and the fact that the crystal shape appears to be analyti-
cally continued beyond the convex region™ are unusual
features of the ECS and are a direct result of the
infiniteness of the interactions. To gain further insight
into the physical origin of these features, we make use of
the simplicity of the interface configurations to
calculate—in a very direct and elementary manner—the
interfacial free energy and the crystal shape.

Consider the infinite-interaction “Ising” model dual to
the KDP model on an arbitrary triangular lattice, so that
the corresponding FV walk takes place on an arbitrary
hexagonal lattice. Let the easiest steps on the hexagonal
lattice be denoted by d,, and —d,, and denote the steps to
the right and left of d, by d, and d,, respectively. Be-
cause of the infiniteness of the interactions, the walker ac-
tually performs a walk on a rectangular lattice with the
composite steps td, and *d,, where d,=d,+d, and
d,=d,+d,. Since a step *=d, or *d, of given sign must
be followed by a step of the same sign, the only interfaces
available to the (say) upper half of the ECS must have
tangent vectors which lie between d, and d, (see Fig. 10).
It is precisely the absence of other interface orientations
which causes the sharp corners of the ECS. The zero-
temperature character of the infinite interactions mani-
fests itself in the fact that the entropy of a walk from the
origin to the point R=nd,+md, (m,n >0) is simply
given by the zero-temperature entropy, In[(n +m)!/
(n!'m!)], at all temperatures. If E, and E, denote the
costs in energy of taking steps =d,; and *d,, we can im-
mediately write down the corresponding free energy per
unit length, y(6), as

y(8)= AE, +mE,
—%[(ﬁ +m)In(A+m)—na InA —m Inm |
0€[0,6,,, U7, 7+6,,]1, (30

where #i=n /R, m =m /R, 0 is measured clockwise from
the ZXd, direction, and cos6,,,,=d,-d,/(dd,). Explic-
itly, we find M =(cos@—sinfcotf,,,)/d, and
A =sin@/(d sinb,,,,). Performing the Wulff construction
for each of the two branches of y(60) separately (i.e., sepa-
rately for 6€[0,6,,,,] and for 6E€ [, 7+ 6,,,,]), one finds
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FIG. 10. Feynman-Vdovichenko walker for the modified
KDP model performs a very simple walk on the honeycomb lat-
tice: The infiniteness of the interactions forces the walker to
make maximal use of the lowest-energy step, which we take to
be +d,. Every step d, is followed by a step d, or d, which
must be followed again by a step d,,, and so on. Thus the walk
takes place effectively on a square lattice with the composite
steps =d, and *d,. Since every composite step must be fol-
lowed by a composite step of the same sign, only the shaded re-
gions are accessible to a walker starting out at a given lattice
site. The fact that directions outside the shaded regions are for-
bidden is what causes the sharp corners of the ECS of the
modified KDP model and gaps in the corresponding Wulff plot.

that the envelope of the Wulff lines for each branch pro-
duces an infinitely extended curve. The pair of curves
thus obtained is given by

(B/2)NE,+E,+(d,+d,)-Y]
e

=2 cosh g[El—-Ez-Hdl—dz)-Y]

and (31)
(dl,dz)—’( —dl’ —dz) )

where Y=(—1Y,X). Equation (29) and the corresponding
equations in 72, and 72, are special cases of (31) corre-
sponding to (d,,d,) equal to (—¥,X), (%,X+¥), and
(X+79,9), respectively, and are just rotations and linear
distortions of one another. The interior envelope of all
Wulff planes is just the convex region enclosed by both
curxg:s and results in a ECS with sharp corners (see Fig.
11).

For completeness we mention that the ECS (31) can be
calculated very simply by mapping the interface
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FIG. 11. ECS of the modified KDP model (solid lines, left)
and the corresponding Wulff plot (right) for # =v=0. The
curves have been plotted at temperatures equally spaced from 0
to T, at intervals of 7./5. The dual lattice for the model has
been chosen to have the basis and orientation shown in Fig. 7.
At finite T, those orientations corresponding to the dashed lines
do not contribute to the ECS and are, therefore, thermodynami-
cally unstable (Ref. 43).

configurations of the modified KDP model onto a one-
dimensional Ising model. This is very similar in spirit to
the work of Shi and Wortis.*’ Each step of the walk can
be in two “states,” along either d, or d, [({) or (1)]. Be-
cause successive steps do not interact in the case of the
modified KDP model, the 1D Ising model reduces to a
zero-dimensional model consisting of a single “spin.” By
rearranging Eq. (5), one can express the ECS as

1=Trexp —g[(El—f—ETH-(EI——ET)o] , o=%1,

(32)
with
E,=E +d,'Y, E;=E,+d,’Y, (33)
which immediately yields Eq. (31) for the general ECS.

IV. CONCLUSION

We have found a general, exact solution for the ECS’s
of free-fermion models. This solution was derived in a
“grand canonical” ensemble of interface orientations and
made use of an exact mapping of the interface onto a
Feynman-Vdovichenko walker. This mapping is possible,
because free-fermion models allow bulk fluctuations to be
effectively uncoupled from interface fluctuations via the
inclusion of appropriate minus signs into the Boltzmann
weights. The ECS of free-fermion models turns out to be
remarkably simple: The ECS is given by the locus of
purely imaginary poles of the determinant of the lattice-
path propagator. Because the bulk free energy of these
models is usually expressed as an integral over the loga-
rithm of this determinant, the ECS can simply be read off
from the analytic form of the bulk free energy.

2D Ising models without crossing bonds are free-
fermion models. Prior to the work of Ref. 9 and the
present paper, the only known exact 2D Ising ECS’s were
those of the rectangular, triangular, and honeycomb lat-
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tices. New Ising results are easily obtained either by ex-
plicitly constructing the FV matrix or by reading off
Det(1— A) from the analytic form of the bulk free energy
(if already known). As examples of new solutions, we
give in Table I the ECS’s of the Kagomé and “Union
Jack” lattices and their duals, the diced and 4-8 lattices,
respectively (see also Figs. 2 and 3).

From a study of the free-fermion case of the eight-
vertex model (the free-fermion model), we demonstrated
that one must generally be careful in reading off the ECS
from the bulk free energy. While many different forms of
the FV matrix give the same bulk free energy, these
different matrices represent interfaces between different
coexisting phases and, therefore, result in different ECS’s.
The modified KDP model is a special case of the free-
fermion model which is not in the Ising universality class.
The ECS of the modified KDP model is the limit of the
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ECS defined for coexisting 2 X 1 phases of a triangular an-
tiferromagnet in the limit of infinite interactions differing
by a finite amount. The ECS of the modified KDP model
is lenticular and has, as a consequence of the infinite in-
teractions, sharp corners. The infinite interactions great-
ly simplify the interface configurations possible and allow
elementary calculation of the ECS, which confirms the
result obtained from the general solution.
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FIG. 10. Feynman-Vdovichenko walker for the modified
KDP model performs a very simple walk on the honeycomb lat-
tice: The infiniteness of the interactions forces the walker to
make maximal use of the lowest-energy step, which we take to
be +d,. Every step d, is followed by a step d, or d, which
must be followed again by a step d,, and so on. Thus the walk
takes place effectively on a square lattice with the composite
steps +d, and *+d,. Since every composite step must be fol-
lowed by a composite step of the same sign, only the shaded re-
gions are accessible to a walker starting out at a given lattice
site. The fact that directions outside the shaded regions are for-
bidden is what causes the sharp corners of the ECS of the
modified KDP model and gaps in the corresponding Wulff plot.
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FIG. 7. An interface between two degenerate 2X 1 phases of
the antiferromagnetic triangular Ising model. The dashed bond
is weaker than the others so that the ground state corresponds
to spins aligned in rows along the dashed lines.



